Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Biomacromolecules ; 25(2): 1228-1245, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38235663

ABSTRACT

Immediate control of excessive bleeding and prevention of infections are of utmost importance in the management of wounds. Cryogels have emerged as promising materials for the rapid release of medication and achieving hemostasis. However, their quick release properties pose the challenge of exposing patients to high concentrations of drugs. In this study, hybrid nanocomposites were developed to address this issue by combining poly(vinyl alcohol) and κ-carrageenan with whitlockite nanoapatite (WNA) particles and ciprofloxacin, aiming to achieve rapid hemostasis and sustained antibacterial effects. A physically cross-linked cryogel was obtained by subjecting a blend of poly(vinyl alcohol) and κ-carrageenan to successive freezing-thawing cycles, followed by the addition of WNA. Furthermore, ciprofloxacin was introduced into the cryogel matrix for subsequent evaluation of its wound healing properties. The resulting gel system exhibited a 3D microporous structure and demonstrated excellent swelling, low cytotoxicity, and outstanding mechanical properties. These characteristics were evaluated through analytical and rheological experiments. The nanocomposite cryogel with 4% whitlockite showed extended drug release of 71.21 ± 3.5% over 21 days and antibacterial activity with a considerable growth inhibition zone (4.19 ± 3.55 cm). Experiments on a rat model demonstrated a rapid hemostasis property of cryogels within an average of 83 ± 4 s and accelerated the process of wound healing with 96.34% contraction compared to the standard, which exhibited only ∼78% after 14 days. The histopathological analysis revealed that the process of epidermal re-epithelialization took around 14 days following the skin incision. The cryogel loaded with WNAs and ciprofloxacin holds great potential for strategic utilization in wound management applications as an effective material for hemostasis and anti-infection purposes.


Subject(s)
Calcium Phosphates , Cryogels , Polyvinyl Alcohol , Humans , Rats , Animals , Cryogels/chemistry , Polyvinyl Alcohol/pharmacology , Carrageenan/chemistry , Wound Healing , Ciprofloxacin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hemostasis , Ethanol
2.
Biomater Adv ; 157: 213730, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101066

ABSTRACT

The incapability of cartilage to naturally regenerate and repair chronic muscular injuries urges the development of competent bionic rostrums. There is a need to explore faster strategies for chondrogenic engineering using mesenchymal stem cells (MSCs). Along these lines, rapid chondrocyte differentiation would benefit the transplantation demand affecting osteoarthritis (OA) and rheumatoid arthritis (RA) patients. In this report, a de novo nanocomposite was constructed by integrating biogenic carbon quantum dot (CQD) filler into synthetic hydrogel prepared from dimethylaminoethyl methacrylate (DMAEMA) and acrylic acid (AAc). The dominant structural integrity of synthetic hydrogel along with the chondrogenic differentiation potential of garlic peel derived CQDs led to faster chondrogenesis within 14 days. By means of extensive chemical and morphological characterization techniques, we illustrate that the hydrogel nanocomposite possesses lucrative features to influence rapid chondrogenesis. These results were further corroborated by bright field imaging, Alcian blue staining and Masson trichome staining. Thus, this stratagem of chondrogenic engineering conceptualizes to be a paragon in clinical wound care for the rapid manufacturing of chondrocytes.


Subject(s)
Quantum Dots , Humans , Nanogels , Chondrogenesis , Cartilage , Hydrogels
3.
Hum Vaccin Immunother ; 19(3): 2289242, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38078840

ABSTRACT

Long-term follow-up of a cohort of unmarried girls who received one, two, or three doses of quadrivalent HPV vaccine, between 10 and 18 years of age, in an Indian multi-centric study allowed us to compare antibody responses between the younger and older age cohorts at 10-years post-vaccination, and study the impact of initiation of sexual activity and cervical HPV infections on antibody levels. Among the younger (10-14 years) recipients of a single dose, 97.7% and 98.2% had detectable binding antibody titers against HPV 16 and HPV 18 respectively at ten years post-vaccination. The proportions among those receiving a single dose at age 15-18 years were 92.3% and 94.2% against HPV 16 and HPV 18 respectively. Mean HPV 16 binding antibody titers were 2.1 folds (95%CI 1.4 to 3.3) higher in those vaccinated at ages 10-14 years, and 1.9 folds (95%CI 1.2 to 3.0) higher in those vaccinated at 15-18 years compared to mean titers seen in the unvaccinated women. Compared to previous timepoints of 36 or 48 months, binding antibodies against HPV 16 and neutralizing antibodies against both HPV 16 and HPV 18 were significantly higher at 10 years. This rise was more pronounced in participants vaccinated at 15-18 years. No association of marital status or cervical HPV infections was observed with the rise in titer. Durability of antibody response in single dose recipients correlated well with the high efficacy of a single dose against persistent HPV 16/18 infections irrespective of age at vaccination, as we reported earlier.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Adolescent , Child , Female , Humans , Antibodies, Neutralizing , Antibodies, Viral , Human papillomavirus 16 , Human papillomavirus 18 , Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18 , Papillomavirus Infections/prevention & control , Vaccination , Vaccines, Combined
4.
J Mater Chem B ; 11(45): 10761-10777, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37807713

ABSTRACT

The field of injectable hydrogels has demonstrated a paramount headway in the myriad of biomedical applications and paved a path toward clinical advancements. The innate superiority of hydrogels emerging from organic constitution has exhibited dominance in overcoming the bottlenecks associated with inorganic-based hydrogels in the biological milieu. Inorganic hydrogels demonstrate various disadvantages, including limited biocompatibility, degradability, a cumbersome synthesis process, high cost, and ecotoxicity. The excellent biocompatibility, eco-friendliness, and manufacturing convenience of organo-hydrogels have demonstrated to be promising in therapizing biomedical complexities with low toxicity and augmented bioavailability. This report manifests the realization of biomimetic organo-hydrogels with the development of bioresponsive and self-healing injectable organo-hydrogels in the emerging pharmaceutical revolution. Furthermore, the influence of click chemistry in this regime as a backbone in the pharmaceutical conveyor belt has been suggested to scale up production. Moreover, we propose an avant-garde design stratagem of developing a hyaluronic acid (HA)-based injectable organo-hydrogel via click chemistry to be realized for its pharmaceutical edge. Ultimately, injectable organo-hydrogels that materialize from academia or industry are required to follow the standard set of rules established by global governing bodies, which has been delineated to comprehend their marketability. Thence, this perspective narrates the development of injectable organo-hydrogels via click chemistry as a prospective elixir to have in the arsenal of pharmaceuticals.


Subject(s)
Hydrogels , Tissue Engineering , Click Chemistry , Prospective Studies , Hyaluronic Acid
5.
J Mater Chem B ; 11(45): 10967-10968, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37872812

ABSTRACT

Correction for 'Injectable organo-hydrogels influenced by click chemistry as a paramount stratagem in the conveyor belt of pharmaceutical revolution' by Abhyavartin Selvam et al., J. Mater. Chem. B, 2023, https://doi.org/10.1039/d3tb01674a.

6.
Biotechnol Adv ; 68: 108237, 2023 11.
Article in English | MEDLINE | ID: mdl-37604228

ABSTRACT

The evolution of industries have introduced versatile technologies, motivating limitless possibilities of tackling pivotal global predicaments in the arenas of medicine, environment, defence, and national security. In this direction, ardently emerges the new era of Industry 5.0 through the eyes of biomanufacturing, which integrates the most advanced systems 21st century has to offer by means of integrating artificial systems to mimic and nativize the natural milieu to substitute the deficits of nature, thence leading to a new meta world. Albeit, it questions the natural order of the living world, which necessitates certain paramount stipulations to be addressed for a successful expansion of biomanufacturing Industry 5.0. Can humans live in synergism with artificial beings? How can humans establish dominance of hierarchy with artificial counterparts? This perspective provides a bird's eye view on the plausible direction of a new meta world inquisitively. For this purpose, we propose the influence of internet of things (IoT) via new generation interfacial systems, such as, human-machine interface (HMI) and brain-computer interface (BCI) in the domain of tissue engineering and regenerative medicine, which can be extended to target modern warfare and smart healthcare.


Subject(s)
Friends , Robotics , Humans , Regenerative Medicine , Tissue Engineering
7.
J Microencapsul ; 40(2): 82-97, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36719352

ABSTRACT

Scaffolds are implanted to spur the regeneration of damaged tissues. The inappropriate construction of scaffolds laden with cells is not efficient. The optimisation of the scaffolds' constituents is essential for tissue repair. In this study, a scaffold embedded with Raloxifene drug was optimised via Response Surface Methodology (RSM), targeting controlled cell proliferation. The independent variables for RSM (fibronectin, collagen I, glutaraldehyde, and Raloxifene) were screened in Swiss target prediction software (probability ≥99%) to optimise dependent variables (porosity, cell viability, degradation, and swelling) by ANOVA and characterised with FTIR, SEM and contact angle measurement. The scaffold was tested for antimicrobial property, and proliferation and attachment of mouse mesenchymal stem cells. The ANOVA analysis with p value ≤ 0.0001 suggested the optimal concentration of biomaterials and drugs. The optimised scaffold displayed 80% porosity with pore size 33 ± 3 µm. We also observed significant cell attachment and proliferation (p value ≤ 0.05) in optimised scaffold. The scaffold may be further evaluated for its potential for tissue repair.


Subject(s)
Collagen , Tissue Scaffolds , Mice , Animals , Raloxifene Hydrochloride , Biocompatible Materials , Porosity , Cell Proliferation , Tissue Engineering/methods
8.
Vaccine ; 41(1): 236-245, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36446654

ABSTRACT

BACKGROUND: The recent World Health Organization recommendation supporting single-dose of HPV vaccine will significantly reduce programmatic cost, mitigate the supply shortage, and simplify logistics, thus allowing more low- and middle-income countries to introduce the vaccine. From a programmatic perspective the durability of protection offered by a single-dose will be a key consideration. The primary objectives of the present study were to determine whether recipients of a single-dose of quadrivalent HPV vaccine had sustained immune response against targeted HPV types (HPV 6,11,16,18) at 10 years post-vaccination and whether this response was superior to the natural antibody titres observed in unvaccinated women. METHODS: Participants received at age 10-18 years either one, two or three doses of the quadrivalent HPV vaccine. Serology samples were obtained at different timepoints up to 10 years after vaccination from a convenience sample of vaccinated participants and from age-matched unvaccinated women at one timepoint. The evolution of the binding and neutralizing antibody response was presented by dose received. 10-year durability of immune responses induced by a single-dose was compared to that after three doses of the vaccine and in unvaccinated married women. RESULTS: The dynamics of antibody response among the single-dose recipients observed over 120 months show stabilized levels 18 months after vaccination for all four HPV types. Although the HPV type-specific (binding or neutralizing) antibody titres after a single-dose were significantly inferior to those after three doses of the vaccine (lower bounds of GMT ratios < 0.5), they were all significantly higher than those observed in unvaccinated women following natural infections (GMT ratios: 2.05 to 4.04-fold higher). The results correlate well with the high vaccine efficacy of single-dose against persistent HPV 16/18 infections reported by us earlier at 10-years post-vaccination. CONCLUSION: Our study demonstrates the high and durable immune response in single-dose recipients of HPV vaccine at 10-years post vaccination.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Female , Humans , Child , Adolescent , Human papillomavirus 16 , Papillomavirus Infections/prevention & control , Human papillomavirus 18 , Vaccines, Combined , Vaccination/methods , Antibody Formation , Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18
9.
Cell Tissue Bank ; 24(2): 285-306, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36222966

ABSTRACT

Rise in the incidences of chronic degenerative diseases with aging makes wound care a socio-economic burden and unceasingly necessitates a novel, economical, and efficient wound healing treatment. Platelets have a crucial role in hemostasis and thrombosis by modulating distinct mechanistic phases of wound healing, such as promoting and stabilizing the clot. Platelet-rich plasma (PRP) contains a high concentration of platelets than naïve plasma and has an autologous origin with no immunogenic adverse reactions. As a consequence, PRP has gained significant attention as a therapeutic to augment the healing process. Since the past few decades, a robust volume of research and clinical trials have been performed to exploit extensive role of PRP in wound healing/tissue regeneration. Despite these rigorous studies and their application in diversified medical fields, efficacy of PRP-based therapies is continuously questioned owing to the paucity of large samplesizes, controlled clinical trials, and standard protocols. This review systematically delineates the process of wound healing and involvement of platelets in tissue repair mechanisms. Additionally, emphasis is laid on PRP, its preparation methods, handling, classification,application in wound healing, and PRP as regenerative therapeutics combined with biomaterials and mesenchymal stem cells (MSCs).


Subject(s)
Mesenchymal Stem Cells , Platelet-Rich Plasma , Humans , Wound Healing , Blood Platelets , Biocompatible Materials
10.
J Biomol Struct Dyn ; 41(17): 8292-8306, 2023.
Article in English | MEDLINE | ID: mdl-36264095

ABSTRACT

STAT3 signaling is a major intrinsic pathway for cell proliferation owing to its frequent activation in injured tissues. Various STAT3-regulated genes encode cytokines and growth factors, the receptors of which in turn activate the same STAT3 pathways, thereby regulating cell proliferation. In present study, we aimed to analyze several compounds for their wound healing and tissue repair potential by computer-aided virtual screening and Molecular dynamics (MD) simulation. Based on literature studies, a total of 36 drug molecules were selected having critical functions in wound healing and tissue repair. The pharmacological features (ADME and toxicity) of these molecules were predicted to find lead molecules among them. Further, a comparative study was performed to screen binding efficiency of STAT3 with many conventional wound healers by molecular docking. Among all, W6S, Strychnin, Prednisone and N-(6-(4-(3-(4-((4-Methylpiperazin-1-yl) methyl)-3- (trifluoromethyl)phenyl)ureido)phenoxy)pyrimidin-4-yl)cyclopropanecarboxamide showed best docking with STAT3 protein. The calculated binding energy of these molecules with STAT3 was found to be -8.9 Kca/mol for N-(6-(4-(3-(4-((4-Methylpiperazin-1-yl) methyl)-3-(trifluoromethyl) phenyl)ureido)phenoxy)pyrimidin-4-yl)cyclopropanecarboxamide, -8.7 Kcal/mol for W6S, -8.5 Kcal/mol for Strychnine and -8.4 Kcal/mol for Prednisone . The result was reconsidered for MD simulation. The simulation result showed stable binding of the ligand with STAT3 protein for 100 ns. These compounds showed better interaction potential with STAT3 was compared to known tissue repair molecules. Our data paves way for further exploration of these molecules as novel cell proliferators to be tested in various types of wound and tissue injuries.Communicated by Ramaswamy H. Sarma.

11.
NMR Biomed ; 36(5): e4884, 2023 05.
Article in English | MEDLINE | ID: mdl-36453877

ABSTRACT

The peritumoral vasogenic edema (PVE) in brain tumors exhibits varied characteristics. Brain metastasis (BM) and meningioma barely have tumor cells in PVE, while glioblastoma (GB) show tumor cell infiltration in most subjects. The purpose of this study was to investigate the PVE of these three pathologies using radiomics features in FLAIR images, with the hypothesis that the tumor cells might influence textural variation. Ex vivo experimentation of radiomics analysis of T1-weighted images of the culture medium with and without suspended tumor cells was also attempted to infer the possible influence of increasing tumor cells on radiomics features. This retrospective study involved magnetic resonance (MR) images acquired using a 3.0-T MR machine from 83 patients with 48 GB, 21 BM, and 14 meningioma. The 93 radiomics features were extracted from each subject's PVE mask from three pathologies using T1-dynamic contrast-enhanced MR imaging. Statistically significant (< 0.05, independent samples T-test) features were considered. Features maps were also computed for qualitative investigation. The same was carried out for T1-weighted cell line images but group comparison was carried out using one-way analysis of variance. Further, a random forest (RF)-based machine learning model was designed to classify the PVE of GB and BM. Texture-based variations, especially higher nonuniformity values, were observed in the PVE of GB. No significance was observed between BM and meningioma PVE. In cell line images, the culture medium had higher nonuniformity and was considerably reduced with increasing cell densities in four features. The RF model implemented with highly significant features provided improved area under the curve results. The possible infiltrative tumor cells in the PVE of the GB are likely influencing the texture values and are higher in comparison with BM PVE and may be of value in the differentiation of solitary metastasis from GB. However, the robustness of the features needs to be investigated with a larger cohort and across different scanners in the future.


Subject(s)
Brain Neoplasms , Glioblastoma , Meningeal Neoplasms , Meningioma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Retrospective Studies , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Perfusion , Edema
12.
J Biomol Struct Dyn ; 41(5): 2002-2015, 2023 03.
Article in English | MEDLINE | ID: mdl-35043754

ABSTRACT

Plasmodium falciparum is counted as one of the deadly species causing malaria. In that respect, enoyl acyl carrier protein reductase is recognized as one of the attractive druggable targets for the identification of antimalarials. Thus, from the structural proteome of ENR, common feature pharmacophores were constructed. To identify the representative models, all the hypotheses were subjected to validation methods, like, test set, enrichment factor, and Güner-Henry method, and the selected representative hypotheses were used to screen out the drug-like natural products. Further, the screened candidates were advanced to molecular docking calculations. Based on the docking score criteria and presence of essential interaction with Tyr277, seven candidates were shortlisted to conduct the HYDE and QSAR assessment. Further, the stability of these complexes was evaluated by employing molecular dynamics simulations, molecular mechanics-generalized born surface area approach-based free binding energy calculations with the residue-wise contribution of PfENR to the total binding free energy of the complex. On comparing the root mean square deviation, and fluctuation plots of the docked candidates with the reference, all the candidates displayed stable behavior, and the same outcome was depicted from the secondary structure element. However, from the free energy calculations, and residue-wise contribution conducted after dynamics, it was observed that out of seven, only five candidates sustain the binding with Tyr277 and cofactor of PfENR. Therefore, in the current work, the hybrid study of screening and stability lead to the identification of five structurally diverse candidates that can be employed for the design of novel antimalarials.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antimalarials , Biological Products , Malaria , Humans , Molecular Docking Simulation , Antimalarials/pharmacology , Antimalarials/chemistry , Pharmacophore , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) , Molecular Dynamics Simulation , Plasmodium falciparum/metabolism
13.
J Biomol Struct Dyn ; 41(10): 4405-4420, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35491689

ABSTRACT

Despite substantial progress in surgery, managing multi-tissue injuries is strenuous to accomplish and requires a multi-staged serial treatment of individual tissues. Stimulated regeneration affects the complete structural and functional repair of both hard and soft tissues post-injury and thus serves as an attractive therapeutic option to target multi-tissue injuries. This study utilized data mining and structural analysis to identify a target that has the ability to evoke healing of the two most commonly injured tissues i.e., bone and muscle, and stimulate the inherent vascular connectivity between the tissues. To find out the multipotential molecule the gene expression profile from GSE34747 was extracted and processed to identify the differentially expressed genes (DEGs). The DEGs were then subjected to gene ontology enrichment analysis to filter out a target that is likely to regulate the multi-tissue regeneration. Further, STITCH and PubChem databases were screened to determine a stimulatory drug against the identified target molecule. Finally, the binding affinity and stability of the potential drug candidate(s) against the target were analysed by molecular docking and molecular dynamics simulation. The results revealed that bone morphogenetic protein-4 (BMP-4) was associated with the regulation of the multiple regeneration processes. The computational screening results suggested Retinoic acid and Torularhodin as potential drug candidates for the stimulation of BMP-4. Both drugs demonstrated slightly different but stable interactions with BMP-4, suggesting that the identified drug candidates are likely to serve as potential leads to further enhance tissues regeneration.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Docking Simulation
14.
Front Cell Dev Biol ; 10: 664261, 2022.
Article in English | MEDLINE | ID: mdl-35399522

ABSTRACT

Hematopoietic stem cells (HSCs) possess two important properties such as self-renewal and differentiation. These properties of HSCs are maintained through hematopoiesis. This process gives rise to two subpopulations, long-term and short-term HSCs, which have become a popular convention for treating various hematological disorders. The clinical application of HSCs is bone marrow transplant in patients with aplastic anemia, congenital neutropenia, sickle cell anemia, thalassemia, or replacement of damaged bone marrow in case of chemotherapy. The self-renewal attribute of HSCs ensures long-term hematopoiesis post-transplantation. However, HSCs need to be infused in large numbers to reach their target site and meet the demands since they lose their self-renewal capacity after a few passages. Therefore, a more in-depth understanding of ex vivo HSCs expansion needs to be developed to delineate ways to enhance the self-renewability of isolated HSCs. The multifaceted self-renewal process is regulated by factors, including transcription factors, miRNAs, and the bone marrow niche. A developed classical hierarchical model that outlines the hematopoiesis in a lineage-specific manner through in vivo fate mapping, barcoding, and determination of self-renewal regulatory factors are still to be explored in more detail. Thus, an in-depth study of the self-renewal property of HSCs is essentially required to be utilized for ex vivo expansion. This review primarily focuses on the Hematopoietic stem cell self-renewal pathway and evaluates the regulatory molecular factors involved in considering a targeted clinical approach in numerous malignancies and outlining gaps in the current knowledge.

15.
J Microencapsul ; 39(1): 49-60, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34985373

ABSTRACT

Stem cell homing to bone marrow (BM) suffers from premature differentiation of transfused cells within the blood stream, thereby reducing the efficiency of stem cell transplantation (SCT). This work is attempted to enhance the homing of cells in BM. Fibronectin modified alginate (A-F) was prepared and used to coat the cells. Biodistribution and survival advantage provided by A-F coating was evaluated in BALB/c mice. The A-F conjugate showed characteristic FT-IR peaks of alginate at 3308 cm-1 and 1634 cm-1, and Fibronectin peak at 675 cm-1. The A-F coating prevented antibodies from binding to their respective cell surface receptors. The A-F coat abolished haemagglutination. Significant distribution of coated cells was observed in BM after 24 h. This provided protection to 7 Gy irradiated mice. The A-F coating showed no histological toxicity in vivo. The coating formulation is likely to be useful for shielding clinically relevant cell types to improve targeting for organ regeneration.


Subject(s)
Bone Marrow , Fibronectins , Alginates , Animals , Bone Marrow Cells , Mice , Mice, Inbred BALB C , Spectroscopy, Fourier Transform Infrared , Tissue Distribution
16.
Hum Cell ; 35(1): 37-50, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34800267

ABSTRACT

Reactive Oxygen Species are chemically unstable molecules generated during aerobic respiration, especially in the electron transport chain. ROS are involved in various biological functions; any imbalance in their standard level results in severe damage, for instance, oxidative damage, inflammation in a cellular system, and cancer. Oxidative damage activates signaling pathways, which result in cell proliferation, oncogenesis, and metastasis. Since the last few decades, mesenchymal stromal cells have been explored as therapeutic agents against various pathologies, such as cardiovascular diseases, acute and chronic kidney disease, neurodegenerative diseases, macular degeneration, and biliary diseases. Recently, the research community has begun developing several anti-tumor drugs, but these therapeutic drugs are ineffective. In this present review, we would like to emphasize MSCs-based targeted therapy against pathologies induced by ROS as cells possess regenerative potential, immunomodulation, and migratory capacity. We have also focused on how MSCs can be used as next-generation drugs with no side effects.


Subject(s)
Cardiovascular Diseases/etiology , Cardiovascular Diseases/therapy , Inflammation/etiology , Inflammation/therapy , Kidney Diseases/etiology , Kidney Diseases/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells , Neoplasms/etiology , Neoplasms/therapy , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/therapy , Oxidative Stress , Reactive Oxygen Species/adverse effects , Animals , Cardiovascular Diseases/pathology , Electron Transport , Humans , Inflammation/pathology , Kidney Diseases/pathology , Mice , Neoplasms/pathology , Neurodegenerative Diseases/pathology
17.
Lancet Oncol ; 22(11): 1518-1529, 2021 11.
Article in English | MEDLINE | ID: mdl-34634254

ABSTRACT

BACKGROUND: A randomised trial designed to compare three and two doses of quadrivalent human papillomavirus (HPV) vaccine in adolescent girls in India was converted to a cohort study after suspension of HPV vaccination in trials by the Indian Government. In this Article, the revised aim of the cohort study was to compare vaccine efficacy of single dose to that of three and two doses in protecting against persistent HPV 16 and 18 infection at 10 years post vaccination. METHODS: In the randomised trial, unmarried girls aged 10-18 years were recruited from nine centres across India and randomly assigned to either two doses or three doses of the quadrivalent HPV vaccine (Gardasil [Merck Sharp & Dohme, Whitehouse Station, NJ, USA]; 0·5 mL administered intramuscularly). After suspension of recruitment and vaccination, the study became a longitudinal, prospective cohort study by default, and participants were allocated to four cohorts on the basis of the number vaccine doses received per protocol: the two-dose cohort (received vaccine on days 1 and 180 or later), three-dose cohort (days 1, 60, and 180 or later), two-dose default cohort (days 1 and 60 or later), and the single-dose default cohort. Participants were followed up yearly. Cervical specimens were collected from participants 18 months after marriage or 6 months after first childbirth, whichever was earlier, to assess incident and persistent HPV infections. Married participants were screened for cervical cancer as they reached 25 years of age. Unvaccinated women age-matched to the married vaccinated participants were recruited to serve as controls. Vaccine efficacy against persistent HPV 16 and 18 infections (the primary endpoint) was analysed for single-dose recipients and compared with that in two-dose and three-dose recipients after adjusting for imbalance in the distribution of potential confounders between the unvaccinated and vaccinated cohorts. This trial is registered with ISRCTN, ISRCTN98283094, and ClinicalTrials.gov, NCT00923702. FINDINGS: Vaccinated participants were recruited between Sept 1, 2009, and April 8, 2010 (date of vaccination suspension), and followed up over a median duration of 9·0 years (IQR 8·2-9·6). 4348 participants had three doses, 4980 had two doses (0 and 6 months), and 4949 had a single dose. Vaccine efficacy against persistent HPV 16 and 18 infection among participants evaluable for the endpoint was 95·4% (95% CI 85·0-99·9) in the single-dose default cohort (2135 women assessed), 93·1% (77·3-99·8) in the two-dose cohort (1452 women assessed), and 93·3% (77·5-99·7) in three-dose recipients (1460 women assessed). INTERPRETATION: A single dose of HPV vaccine provides similar protection against persistent infection from HPV 16 and 18, the genotypes responsible for nearly 70% of cervical cancers, to that provided by two or three doses. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/immunology , Human papillomavirus 16/immunology , Human papillomavirus 18/immunology , Papillomavirus Infections/prevention & control , Vaccination/methods , Adolescent , Cervix Uteri/pathology , Cervix Uteri/virology , Child , Female , Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/administration & dosage , Human papillomavirus 16/isolation & purification , Human papillomavirus 18/isolation & purification , Humans , India , Longitudinal Studies , Papillomavirus Infections/diagnosis , Prospective Studies , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/prevention & control
18.
J Biomed Opt ; 26(2)2021 02.
Article in English | MEDLINE | ID: mdl-33569937

ABSTRACT

SIGNIFICANCE: While spectral-domain optical coherence tomography (SD-OCT) is a preferred form of OCT imaging, sensitivity roll-off limits its applicability for certain biomedical imaging applications. AIM: The aim of this work is to extend the imaging range of conventional SD-OCT systems for imaging large luminal organs such as the gastrointestinal tract. APPROACH: We present an SD-OCT system operating at a center wavelength of 1300 nm that uses two delayed reference arms to reduce sensitivity roll-off and an optical switch and a fiber optic delay line to ensure that the interference spectra are acquired from the same sample time window. RESULT: The proposed system was used to image swine colon ex vivo and duodenum in vivo, demonstrating improved image quality due to a ∼14 dB increase in sensitivity at the edges of the ranging depth. CONCLUSION: The proposed system requires modest hardware implementation and is compatible with catheter-based endoscopic helical scanning with enhanced sensitivity for the samples at a distance of ∼6 mm from the zero delay point.


Subject(s)
Eye , Tomography, Optical Coherence
19.
Stem Cell Rev Rep ; 17(1): 113-131, 2021 02.
Article in English | MEDLINE | ID: mdl-32920752

ABSTRACT

The novel virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) caused the Corona Virus Disease-2019 (COVID-19) outbreak in Wuhan, Hubei province of China. This virus disseminated rapidly and reached to an unprecedented pandemic proportion in more than 213 nations with a large number of fatalities. The hypersecretion of pro-inflammatory cytokines is the main cause of mortality and morbidity due to COVID-19, therefore strategies that avert the cytokine storm may play a crucial role in abating the severity of COVID-19. This review highlights the minute details of SARS-CoV-2, its genomic organization, genomic variations within structural and non-structural proteins and viral progression mechanism in human beings. The approaches like antiviral strategies are discussed, including drugs that obstruct viral propagation and suppress the pro-inflammatory cytokines. This compilation emphasizes Mesenchymal Stem Cells (MSCs) based therapy alone or in combination with other therapeutics as an attractive curative approach for COVID-19 pandemic. The MSCs and its secretome, including antimicrobial peptides (AMPs) have various capabilities, for instance, immunomodulation, regeneration, antimicrobial properties, potential for attenuating the cytokine storm and bare minimum chances of being infected with SARS-CoV-2 virus. The immunomodulatory property of MSCs affects inflammatory state and regulates immune response during SARS-CoV-2 infection. However, as of now, there is no WHO-approved MSCs based therapy for the treatment of COVID-19 infection. Graphical abstract.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Pandemics , SARS-CoV-2/pathogenicity , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Cytokines/immunology , Humans , Immunomodulation/immunology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology
20.
PLoS One ; 15(12): e0244242, 2020.
Article in English | MEDLINE | ID: mdl-33373380

ABSTRACT

In context of the ongoing multi-centric HPV vaccine study in India, unvaccinated married women (N = 1484) aged 18-23 years were recruited in 2012-2015 as age-matched controls to the vaccinated women and followed up yearly. We assess type-specific prevalence, natural history and potential determinants of human papillomavirus (HPV) infection in these unvaccinated women. Cervical samples were collected yearly for at least four consecutive years. A Multiplex Type-Specific E7-Based polymerase chain reaction assay was used to detect 21 HPV types. HPV prevalence was 36.4% during 6 years. Most common HPV types were 16 (6.5%) and 31 (6.1%). Highest persistence were observed for HPV 35 (62.5%) and 52 (25%). New HPV acquisition rate was 5.6/1000 person-months of observation (PMO), highest for HPV 16 (1.1/1000 PMO). Type-specific clearance rates ranged between 2.9-5.5/100 PMO. HPV 16 and/or 18 infections were 41% (95% CI 4-63%) lower among women with 2-<3 years between marriage and first cervical sample collection compared to those with <2 years. HPV prevalence and acquisition rates in young Indian women were lower than their Western counterparts. HPV 16 infections being most common shows the importance and potential impact of HPV vaccination in India. Women with 2-3 years exposure had reduced risk possibly due to higher infections clearance.


Subject(s)
Papillomaviridae/isolation & purification , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/administration & dosage , Sexual Behavior , Vaccination/statistics & numerical data , Adolescent , Adult , Female , Humans , India/epidemiology , Longitudinal Studies , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , Prevalence , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...